Воскресенье, 18.02.2018, 00:06
Бронзовый прокат
Главная | Регистрация | Вход Приветствую Вас Гость | RSS
Ваш E-mail:
Тема письма:
Имя (организация), телефон *:
Марка проката, размеры, количество *:
Ваши реквизиты:

Категории каталога
Мои статьи [11]
Форма входа
Поиск
Друзья сайта
Главная » Статьи » Мои статьи

Основные свойства бронзы БрБ2.

Основные свойства бронзы БрБ2.

Сплав БрБ2 является весьма специфичным, отличным от других медных сплавов. Специфика этого сплава обусловлена содержащимся в нем бериллия (Ве). Бериллиевые бронзы относятся к классу так называемых дисперсионно-упрочняемых сплавов, особенностью которых является зависимость растворимости легирующих компонентов от температуры, что позволяет управлять свойствами бронз, как при производстве проката, так и при изготовлении изделий.
В промышленных сплавах системы Cu-Be, как и в большинстве материалов с эффектом дисперсионного упрочнения, концентрационная область располагается возле границы максимальной растворимости в твердом растворе, и соответствует примерно 2% содержания Be.

При концентрации бериллия от 1.6 до 2.0% веса, модификация бериллия, известная как β - фаза, присутствует при температуре ниже 600˚С. Эта фаза формируется как результат ограниченной твердой растворимости бериллия. В этот фактор более всего способствует отвердению при термообработке («старении»). При нагревание сплава до температуры 780˚С бериллий растворяетсяся в α -фазе (твердый раствор α + β). Резкое охлаждение до комнатной температуры поддерживает бериллий в твердом растворе. Этот процесс, называемый отжигом и делает сплав мягким и тягучим, помогает регулировать размер кристаллов, подготавливает сплав к операции «старения». Нагревание насыщенного твердого раствора до температуры 315˚С с выдержкой на этой температуре 2-3 часа вызывает осаждение упрочняющей фазы и придает сплаву высокую твердость.

Одним из важных свойств материала, используемого для опор скольжения, является устойчивость к нагреву.
В табл.1 приведено изменение механических свойств сплава БрБ2, содержащего 2% Ве, в зависимости от температуры и продолжительности нагрева. Перед нагревом образцы были подвергнуты старению при Т=320 ˚С в течение t=2 часов.

Таблица 1 Изменение механических свойств образцов меднобериллиевого сплава БрБ2, с повышением температуры и продолжительности выдержки при заданной температуре

№ п\п

Температура, С

Время выдержки, час

Предел прочности, МПа

Условный предел текучести 0,2%, МПа

Удлиннение, %

1

20

1

1265

1065

6,8

2

250

1

1350

1050

5,8

3

250

500

1260

1005

3,9

4

250

1000

1020

945

3,9

5

300

1

1178

940

2,0

6

300

500

1022

750

3,0

7

300

1000

971

730

4,0

8

400

1

795

416

7,0

9

400

500

532

300

16,0

10

400

1000

492

287

20


Вывод: Как видно из данных таблицы, до 250˚С механические свойства практически не меняются даже при выдержке в течение 1000 часов, что говорит о хорошей устойчивости бериллиевой бронзы к температурному воздействию.

Важнейшим из свойств подшипникового материала является износостойкость и антифрикционность.
Вследствие большой твердости, которую изделия из меднобериллиевых сплавов приобретают после старения, они обладают и высоким сопротивлением износу при хороших антифрикционных свойствах. Коэффициент трения подвергнутого отпуску меднобериллиевого сплава марки БрБ2 в паре осевой железнодорожной сталью и смазкой веретенным маслом №2, полученный при испытании на машине Амслера, равен 0,05.
Хорошее скольжение обеспечивается наличием на поверхности изделий окисной пленки.
Кроме того КТР бронзы БрБ2 близок к КТР инструментальных сталей, что также способствует надежной работе этих материалов в одном узле.

Зарубежный опыт использования бериллиевой бронзы в качестве материала для опор скольжения. Результаты испытаний.
Компания Brush Wellman Inc (США), являющаяся признанным мировым лидеров в области производства бериллиевых бронз, рекомендует к применению для производства подшипниковых опор тяжело нагруженных агрегатов и устройств, работающих в агрессивных средах, сплав Alloy 25, (С17200).
Сплав Alloy 25 в состаренном состоянии достигает максимальной прочности и твердости после обработки холодной пластической деформацией. Предельная прочность на разрыв может превышать 200 ksi (1290 МПа) при твердости 45 HRC. Сплав Alloy 25 также проявляет исключительную устойчивость к релаксации напряжений в условиях повышенных температур.

Российский аналог Alloy 25 - сплав БрБ2, тождественен Alloy 25 по химическому составу (табл. 2) и обладает механическими характеристиками, приведенными в табл.3

Табл. 2 Сравнительные характеристики бериллиевых бронз по химическому составу,%

Марка сплава

Be

Co

Ni

Co+Ni

Co+Ni+Fe

Примеси

Cu

Alloy 25

1,8-2,0

-

-

0,2 min

0,6 max

0,15Al; 0,15Fe; 0,15Si; 0,005Pb; сумма-0,5

Баланс

БрБ2

1,8-2,1

-

0,2-0,5

-

-

0,15Al; 0,15Fe; 0,15Si; 0,005Pb; сумма-0,5

Баланс


Табл. 3 Гарантируемые механические характеристики полуфабрикатов из БрБ2 в сравнении с БрКмЦ3-1

Марка сплава

ГОСТ

Полуфабрикат

Состояние

Диаметр, мм

σ, Мпа

δ, %

НВ

БрБ2

15835-70; 1789-70

Прутки тянутые

Мягкое

5,0-40,0

392-590

≥25

100-150

БрБ2

15835-70; 1789-70

Прутки тянутые

Твердое

5,0-15,0; 15,0-40,0

735-980; 640-880

1,0; 1,0

150; 150

БрБ2

15835-70; 1789-70

Прутки тянутые

Состаренное из мягкого

5,0-40,0

≥ 1080

2,0

≥320

БрБ2

15835-70; 1789-70

Прутки тянутые

Состаренное из твердого

5,0-40,0

≥ 1170

2,0

≥340

БрБ2

15835-70; 1789-70

Прутки прессованные

Прессованное

42-100

≥ 442

20

-

БрКмЦ3-1

18175-78; 1628-78

Прутки тянутые

Твердое

13-41

≥ 490

15

160


Отметим, что здесь и далее под сопротивлением износу (износостойкостью) понимается стойкость в условиях, когда трущиеся металлы начинают свариваться, «схватываться» под влиянием высокого давления, т.е. возникают условия для диффузионного взаимопроникновения частиц трущихся металлов.
Инженерный центр компании Brush Wellman, обосновывая выбор материала Alloy 25 (БрБ2), в таблицах 4-8 приводит экспериментальные данные испытаний на износостойкость, полученные по методике ASTM -G98 сообщества инженеров США.
Методика проведенных экспериментов заключалась в следующем: измерялся износ пары материалов в устройстве, состоящим из неподвижного блока из испытуемого материала, в отверстие которого помещается и нагружается осевой нагрузкой цилиндрический диск, выполненный из другого контактирующего материала, причем последний приводится во вращение в условиях сухого трения.

В табл. 4 приведены данные по износостойкости фрикционной пары Alloy 25 (БрБ2) в контакте с Alloy 25 (БрБ2), подвергнутой различным видам термообработки и деформационного упрочнения.
В табл. 5 приведены данные по износостойкости Alloy 25 (БрБ2) в контакте с коррозионно-стойкими сталями и сплавами.

Табл. 4 Износостойкость Alloy 25 (БрБ2) в контакте с Alloy 25 (БрБ2)

Виды термообработки сплавов в контакте

Условный предел текучести, σ 0,2%

Пороговое значение давления прижима трущихся материалов при испытании

АТ в контакте с АТ

140ksi (903МПа)

100ksi (645МПа) +

НТ в контакте с НТ

150ksi (968МПа)

100ksi (645МПа) +

DST в контакте с DST

110ksi (709МПа)

100ksi (645МПа) +


ПРИМЕЧАНИЕ:
AT - закаленный и состаренный
HT - Подвергнутый холодной деформации после закалки и состаренный
DST - Отожженный и состаренный под нагрузкой 100 -110 ksi
+ (без следов износа)

Табл. 5 Износостойкость Alloy 25 (БрБ2) в контакте с коррозионно-стойкими сталями и сплавами

Сплавы в контакте

Условный предел текучести, σ 0,2%

Пороговое значение давления прижима трущихся материалов при испытании

Аустенитные стали в контакте с Alloy 25:

 

 

303

45ksi (290МПа)

40ksi (258МПа) +

304

55ksi (355МПа)

30ksi (194МПа) +

316

44ksi (284МПа)

30ksi (194МПа) +

Ферритные и мартенситные стали в контакте с Alloy 25:

 

 

416 (0,95%Cr, 0,3%Mo)

92ksi (593МПа)

70ksi (452МПа) +

440

79ksi (510МПа)

50ksi (323МПа) +

Никель-кобальтовые сплавы в контакте с Alloy 25:

 

 

Nitronic 50 (аналог 03Х14Р7В)

79ksi (510МПа)

60ksi (387МПа) +

Nitronic 60

56ksi (361МПа)

55ksi (355МПа) +

Alloy 2205

87ksi (561МПа)

80ksi (516МПа) +

15-5PH

149ksi (961МПа)

90ksi (581МПа) +

17-4PH

146ksi (942МПа)

90ksi (581МПа) +

Custom 445

132ksi (851МПа)

60ksi (387МПа) +

Gall Tough

6ksi (38МПа)

50ksi (323МПа) +


ПРИМЕЧАНИЕ:
Сплав Alloy 25 в процессе испытания на износ при давлении 145 ksi
+ (без следов износа)

В табл. 6, для сравнения с износостойкостью Alloy 25 (БрБ2), приведены данные по износостойкости некоторых никель-кобальтовых сплавов, химический состав которых приведен в табл. 7
В табл. 8 для сравнения с износостойкостью Alloy 25 (БрБ2) приведены данные по износостойкости кремниевых бонз типа БрКН1-3 и БрКМцЗ-1, применяемых обычно в качестве антифрикционных втулок.

Табл. 8 Износостойкость кремниевых бронз, обычно применяемых в опорах скольжения

Анализ данных испытаний на износостойкость позволяет сделать следующие выводы:
1. Пара бериллиевых бронз Alloy 25 (БрБ2) - Alloy 25 (БрБ2) обладает наиболее высокими износостойкими свойствами по сравнению с остальными антифрикционными парами.
2. Alloy 25 (БрБ2) демонстрирует хорошие износостойкие свойства в состаренном состоянии независимо от истории термической обработки и предшествующей обработки давлением.
3. При трении в паре Alloy 25 (БрБ2) - коррозионно-стойкая сталь износа не наблюдается при нагрузке до 0,8 предела текучести для большинства из рассмотренных материалов.
4. Бериллиевая бронза Alloy 25 (БрБ2) обладает существенно более высокими износостойкими свойствами по сравнению с кремнистыми бронзами (см. табл. 3,4 и табл. 7) при более высоких механических свойствах в состаренном состоянии (см. табл. 2)

Вывод: При трении в парах сплав БрБ2 по сплаву БрБ2, сплав БрБ2 по нержавеющей стали износа не наблюдается при нагрузках составляющих 0.7…0.9 от предела текучести сплава или нержавеющей стали (в зависимости от того, каков предел текучести у нержавеющей стали). Указанные нагрузки в парах трения существенно превышают предельные нагрузки для большинства других сплавов, в том числе используемых в качестве подшипников скольжения. Правда следует отметить, что износостойкость пар БрБ2 - рядовые стали относительно невелика.

И, наконец, третьим показателем, характеризующим надежность опор скольжения, является их коррозионная устойчивость.
Так, например, опоры скольжения буровых долот или лопастных насосов, работающих на нефтяных месторождениях, должны выдерживать воздействие содержащихся в пластовых жидкостях взвешенных и коррозионных веществ при высоких давлениях и температурах.

По сопротивлению коррозии бинарные бериллиевые бронзы очень близки к оловянным и алюминиевым бронзам. Например, коррозионная стойкость БрБ2 в 3% растворе HNO3 почти одинакова со стойкостью бронз с 10-14% Sn и алюминиевых бронз с 6-8% Al. В 3% растворе HCl наблюдалось потеря только половина массы бериллиевой бронзы по сравнению с потерями оловянных бронз и примерно равные потери массы с алюминиевыми бронзами.
Бериллиевые бронзы показывают хорошую устойчивость в холодной пресной и морской воде, в большинстве кислотных и щелочных растворов.

В табл. 9 приведены данные о скорости коррозии БрБ2 в различных средах.

Табл. 9 Скорость коррозии БрБ2 под действием различных реагентов, мкм/год

Бериллиевые бронзы, подвергаясь действию влажной или содержащей серу атмосферы, со временем, подобно меди, темнеют. Однако, образующаяся на их поверхности пленка, не влияет на механические свойства. Хорошая стойкость в теплом и влажном воздухе свидетельствует о возможности применения меднобериллиевых сплавов для изготовления деталей, работающих в тропических условиях.

Бериллиевые бронзы мало склонны к межкристаллитной коррозии, однако в напряженном состоянии под действием влажного аммиака и воздуха они подвергаются коррозионному растрескиванию. При повышенных температурах газы вызывают избирательную коррозию меднобериллиевых сплавов, реагируя главным образом с составляющей, обогащенной бериллием. Под действием фтора, хлора, брома и йода на поверхности меднобериллиевых сплавов образуются бериллиевые галоидные соединения, характеризующиеся большой летучестью, вследствие чего происходят потери бериллия. Этот процесс протекает очень энергично при повышенных температурах. Поэтому меднобериллиевые сплавы не следует применять там, где возможно действие указанных газов при повышенных температурах.

При высоких температурах бериллиевая бронза окисляется меньше, чем медь и некоторые сплавы на её основе. При исследовании сплавов с 1-2,4% Ве было установлено, что при длительной выдержке при 800˚С окисление бинарного сплава с 2,4% Ве чрезвычайно мало.

Сравнительные испытания показали, что сталь с 12,5% Cr в четыре раза сильнее окисляется при 610˚С, чем БрБ2, и в равной степени окисляется при 810˚С.

В таблице 10 приведены результаты исследования влияния состава меднобериллиевых сплавов на скорость их коррозии при нагреве в воздушной атмосфере. Испытывались образцы 30х40 мм, вырезанных из полос толщиной 1,2 мм, изготовленных: из меди марки М1; сплава с 1,8% Ве и 0,3% Ni; сплава марки БрБ2,5 с 2,4% Ве и 0,5% Ni.

Таблица 10. Увеличение массы при нагреве в воздушной атмосфере образцов из меди
и меднобериллиевых сплавов

* Средняя величина из 5 наблюдений.

Из данных таблицы следует, что при 570˚С в течение 60 минут сплав марки БрБ2,5 окисляется в 29 раз меньше меди, а сплав с 1,8% Ве и 0,3% Ni – 4,4 раза. При 670˚С окисление за этот же период нагрева сплава марки БрБ2,5 в 12 раз меньше меди, а сплава с 1,8% Ве и 0,3% Ni – в 7 раз.

Вывод: По комплексной устойчивости к коррозии в различных средах бериллиевая бронза показывает хорошие и очень хорошие результаты.

Таким образом, приведенные экспериментальные данные по механической прочности, износостойкости и коррозионной устойчивости позволяют считать бериллиевую бронзу одним из лучших материалов для опор скольжения эксплуатируемых в морской воде (насосное и буровое и прочее оборудование при разработке и эксплуатации шельфовых месторождений), пульпах содержащих абразивные и коррозионные вещества (материковые нефтегазовые, и другие месторождения), а также при изготовлении другого высоконадежного оборудования и машин.

Категория: Мои статьи | Добавил: brb2 (10.04.2009)
Просмотров: 45033 | Рейтинг: 4.8/76 |
Rambler's Top100
Copyright MyCorp © 2018
Сделать бесплатный сайт с uCoz